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Abstract : A short and efficient synthesis of both 8-amino-7-oxopelargonic acid enantiomers
from D or L-alanine is presented. The key step of this first chemical synthesis is the non-
racemizing Horner-Wadsworth-Emmons reaction of a f-ketophosphonate 3 and benzyl 4-
formylbutanoate. The growth-promoting effect of the cnantiomers was tested on Saccharomyces
cerevisiae. Copyright © 1996 Elsevier Science Ltd

The vitamin biotin, which is an essential cofactor for carboxylase-catalyzed reactions, is synthesized by a
multistep pathway in microorganisms! and plants2 (scheme 1). Although biotin biosynthesis has been studied
over a considerable period, the chemical synthesis of 8-amino-7-oxopelargonic acid enantiomers has not yet been

described3:4.
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In the course of studies on this pathway, and especially of the enzyme DAPA-aminotransferase, both
enantiomers of 8-amino-7-oxopelargonic acid were needed.

Chemistry : We report herein the first chemical synthesis of both 8-amino-7-oxopelargonic acid

enantiomers

from L or D-alanine as the starting chiral template. The synthesis of (S$)-8-amino-7-oxopelargonic

acid is described in scheme 2. The known B-ketophosphonate 36,7 was prepared using a different route,
involving the addition of the lithium salt of dimethyl methylphosphonate on the Weinreb amide 2 derived from L-

alanine. We

noticed that 3 partially racemized during silica gel chromatography and that it has to be used as
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crude material (NMR yield = 83% with dimethyl methylphosphonate as contaminating material) since it then
displayed an enantiomeric excess greater than 96%38. The Horner-Wadsworth-Emmons (HWE) reaction of 3
with benzyl 4-formylbutanoate® was then studied. Conditions milder than the usual methods have been used to
perform the HWE reaction of substrates which racemize easily or are base-sensitive!0,11.12, Nevertheless, in our
case the conventional method gave a satisfactory result : f—~ketophosphonate 3 was first regioselectively
deprotonated by 1 eq of NaH (THF, -15°C) and the aldehyde was then added. In this way, enantiomerically pure$
enone 413 was cleanly obtained. Interestingly, enone 4 did not racemize during silica gel chromatography, unlike
L-serine-derived enones reported by Koskinen!!. (§)-8-amino-7-oxopelargonic acid hydrochloride was obtained
by a two-step procedure involving a quantitative one-pot hydrogenation-hydrogenolysis leading to 514 and the
cleavage of the Boc group using a AcOEt solution of hydrogen chloride. Recrystallization from a EtOH/Et20
system afforded (S)-8-amino-7-oxopelargonic acid!? as its HCI salt. It is noteworthy that the amine deprotection
had to be conducted in strong acidic medium in order to avoid the self-condensation of the a-aminoketone
leading to a pyrazine!,
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e (R)-6, HC! : [a]p2 - 46.1 (¢ 1.0, MeOH)
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(a) NaOH / HyO / +BuOH ; BocO ; it ; 12 h ; 75% (b) N-Methylpiperidine ; CIC(O)OMe /
CH,Cl; ; -25°C ; 15 min ; HN(OMe)Me / CH,Cly ; -25°C->1t ; 3 h ; 93% (c) LICH,P(O)(OMe),
2.0 eq/ THF ; -78°C ; 10 min ; 83% ; 96% ee (d) 1) NaH 1.0 eq/ THF ; -15°C ; 5 min 2)
CHO(CHp)3C0O,Bn / THF ; -10°C ; 2.5 h ; 86% ; 96% ee (e) H, 50 bar / AcOEt ; Pd-C 10% ;
48 h ; 100% (f) HClgas / AcOEt ; 30 min ; EtOH/EL0 recryst. ; 88 %

Scheme 2

The same procedure was used to synthesize the (R) isomer starting from D-alanine. The overall yield of the
synthesis is 58% from the commercially available L or D-Boc-alanine. Both compounds were prepared on a 500-
mg scale. The non-racemizing character of the last two steps leading to 8-amino-7-oxopelargonic acid
hydrochloride and the opposite specific rotations of these compounds allow us to think that we thus obtained
both 8-amino-7-oxopelargonic acid enantiomers enantiomerically pure although direct e.e. determination was not
successfull7.

Biological studies : The growth-promoting effect of (S)-6, (R)-6 and rac-6, on Saccharomyces cerevisiae,
was tested using the diffusion agar plate!8. 19, Plots of growth diameters versus concentrations on a
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semilogarithmic scale were linear. The order of potencies is (S)-6>rac-6>(R)-6 as shown in Figure. Assuming a
potency of 1.00 for rac-6 the potency of (S)-6 is 1.55 and that of (R)-6 is 0.77. Based on these data it is clear
that the biologically relevant enantiomer is (S)-6, a result consistent with the known absolute configuration of
(+)-biotin, and the reaction mechanism used by 8-amino-7-oxopelargonate synthase20, the enzyme which forms
8-amino-7-oxopelargonic acid. It is not clear at this point why (R)-6 can promote the growth of S. cerevisiae. A
possibility is that compound 6 racemizes during incubation. Indeed, the fact that different values for the growth
promoting activity of rac-6 have been reported in the literature# 21, 22 (compared to (+)-biotine), shows that this
bioassay can not give a good estimate of the enantiomeric purity of 6. Therefore another assay, such as the in
vitro transformation of 6 catalyzed by DAPA-aminotransferase, is needed for the complete assessment of the
bioactivities of (R)- and ($)-6.
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Figure. Growth response of Saccharomyces cerevisiae to (S)-6, (R)-6 and rac-6

Aliguots of known concentration of the different compounds were loaded on paper disks over the agar
plate and the diameter of the growth circles were manually determined after 15 h incubation!8; 19, Data
were fitted to simple logarithmic function. Closed square (5)-6 ; open triangle rac-6 ; closed circle (R)-6.
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